
The Upstart Algorithm �

a method for constructing and training feed�forward

neural networks

Marcus Frean

Department of Physics and Centre for Cognitive Science
Edinburgh University� The Kings Buildings
May�eld Road� Edinburgh� Scotland

email � marcus�cns�ed�ac�uk

Neural Computation �� ������� ������

Abstract

A general method for building and training multi�layer perceptrons com�

posed of linear threshold units is proposed� A simple recursive rule is used to

build the net�s structure by adding units as they are needed� while a modi�ed

Perceptron algorithm is used to learn the connection strengths� Convergence

to zero errors is guaranteed for any Boolean classi�cation on patterns of bi�

nary variables� Simulations suggest that this method is e�cient in terms of

the numbers of units constructed� and the networks it builds can generalise

over patterns not in the training set�

� Introduction

The Perceptron Learning Algorithm �Rosenblatt ����	 o
ers a powerful but re�
stricted method for learning binary classi�cations� All classi�cations that can in
theory be learned by the Perceptron architecture will be learned
 however� the
number of classi�cations it can learn is only a tiny subset �linearly separable pat�
terns 	 of those that are possible �Minsky and Papert ����	� To perform any arbi�
trary classi�cation successfully� �hidden� units and�or feedback between units are
required� The problem is to train such networks� and recently quite powerful meth�
ods have become available� most notably �back propagation� in its various forms
�eg� Rumelhart� Hinton and Williams ����	� However� because many of these meth�
ods are based on hill�climbing which has the perennial problem of becoming stuck in
local optima� they cannot guarantee that the classi�cation will be learned� Another
problem is that a priori no realistic estimate can be made of the number of hidden
units that are required� Recently� methods such as the Tiling Algorithm �Mezard
and Nadal ����	 and others �Gallant ����a� Nadal ����	 have been proposed which
get around both these problems� In these� the hidden units are constructed in layers
one by one as they are needed� By showing that at least one unit in each layer makes
fewer errors than a corresponding unit in the previous layer� eventual convergence
to zero errors is guaranteed�

�

The method described here also constructs units as it goes� but in a simple and quite
di
erent way� Instead of building layers from the input outwards until convergence�
new units are interpolated between the input layer and the output� The role of
these units is to correct mistakes made by the output unit�

� Basics

Suppose we are given a binary classi�cation to be learned� Each input pattern of
N binary values has an associated target output which the network must learn to
produce� The units are all linear threshold units connected by variable weights to
the inputs� with output o given by

o �

�
� if � � �
� otherwise

where � �

NX
i��

Wi�i

The W �s are the weights� and �i is the value of the i
th input in the given pattern�

The necessary threshold or �bias� is included by having an extra input which is set
to � for all the input patterns� On presentation of pattern �� Perceptron Learning
�Rosenblatt ����	 alters the weights if the target t� di
ers from the output�

�W�
i � �t

� � o�	��i ��	

Using this method any linearly separable class will be learned� but when the patterns
are not linearly separable the values of the weights never stabilise� However� a simple
extension called the Pocket Algorithm �Gallant ����b	 su�ces to make the system
well behaved� This consists of running a Perceptron exactly as above with a random
presentation of patterns� but also keeping a copy of the set of weights which has
lasted longest without being changed� This set of weights will give the minimum
possible number of errors with a probability approaching unity as the training time
increases� That is� if a solution giving say p or fewer errors exists then the pocket
algorithm can be used to �nd it �although unfortunately there is no bound known
for the training time actually required	� I make use of this algorithm to demonstrate
convergence to zero errors�

� Rationale

The basic idea is that a unit builds other units to correct its mistakes� Any unit
�say Z	 can make two kinds of mistake�

�wrongly on � �o�Z � �� but t
�
Z � �	

�wrongly off� �o�Z � �� but t
�
Z � �	

Consider patterns for which Z is wrongly on� Z could be corrected by a large
negative weight from a new unit �say X	 which is active only for those patterns�
Likewise when Z is wrongly off it could be corrected by a large positive weight

�

from another unit �say Y 	 which is active at the right time� Hence X and Y �also
connected to the input layer by variable weights	 can be trained with targets which
depend on Z�s response� These new units might be called �daughters� since they
are generated� by the established �parent� unit� Z�

Consider� for example� the targets we should assign to X � the unit whose role is
to inhibit Z� We would like X to be active if Z was wrongly on� and silent if Z
was correctly on� Similarly X should be silent if Z was wrongly off �to avoid
further inhibition of Z	� Finally� X could be silent if Z was correctly off� although
if X is active in this case� the e
ect is merely to reinforce Z�s response when it was
already correct� This doesn�t itself cause an error� so in practice we can eliminate
these patterns from X �s training set� This elimination makes the problem easier and
faster to solve� but is not essential for the error�correcting property described below�
Targets for Y are similarly derived� These target assignments are summarised in
Figure ��

An important point is that the �raw� output of unit Z is used to set the daughter�s
targets� rather than the value of Z after the daughters have exerted any e
ect� since
this would introduce feedback�

Two useful results follow immediately from this training method� because it essen�
tially gives daughters �X or Y 	 an easier problem to solve than their parent �Z	�
Firstly� daughters can always make fewer errors than their parent� and secondly�
connecting daughter to parent with the appropriate weight will always reduce the
errors made by the parent�

Proof � Z�s errors are
e�Z	 � e�Z	on � e�Z	off

where e�Z	on is the number of patterns for which Z is wrongly on�
If X responded off to every pattern� it would make as many errors as there were
patterns of target tX � �� However�X can always do better than this� In particular�
it can always be on for at least one input pattern whose target is � and off for all
other patterns� For example if the input weights are

Wi � ���i � �

with a bias weight W� � �
X
j

��j ���
�
j � �	

only the �th pattern turns the unit on� Given that the Pocket Algorithm can �nd
the optimal weights visited by a perceptron with any given probability� at worst X
could �nd the above weights� Therefore

e�X	 � e�Z	on � e�Z	 ��	

A similar argument applies to Y � It also follows that Z�s errors are reduced by X �
since

e�Z with X	 � e�X	on � e�X	off � e�Z	off

� e�X	 � e�Z	off

� e�Z	

��	

�Note however that the activity proceeds from daughter to parent�

�

The recursive element of the Upstart algorithm.

Input

*

*

Z’s target

X

Z
’s

 o
ut

pu
t

Z’s target

Z
’s

 o
ut

pu
t

Ytt

0 1 10

0

1

0 0 1

0 01

00

01

- +

X

Z

Y

Figure �� Correcting a parent unit� the left hand table gives the targets� tX � for the
daughter unit X for each combination of �oZ � tZ	� For example� the lower left�hand
entry assigns tX to be � when oZ � � and tZ � � � the �wrongly on� case� Similarly
the right hand table gives the values of tY for the daughter unit Y � The dotted line
represents the �ow of this target information� The �starred� entries correspond to
cases where the pattern could be eliminated from the daughter�s training set�

�

and similarly for Y on its own� When the joint action of X and Y is considered�
the same result holds� i�e� e�Z with X �Y 	 � e�Z	 � �� In the next section an
algorithm which uses the �rst of these results is described� Other possibilities are
discussed in section ��

� The Upstart Algorithm

Assume we already have a unit Z which sees input patterns ��i � i � �� ��� N and
has associated targets t�Z � The weights from the input layer to Z are trained to
minimise the discrepancies between Z�s output and target and once trained� these
weights remain frozen� This ��rst� unit is actually the eventual output unit� and
its targets are the classi�cation to be learned� The following two steps are then ap�
plied recursively� generating a binary branching tree of units� Thus daughter units
behave just as Z did� constructing daughter units themselves if they are required�

Step �� If Z makes any �wrongly on� mistakes� it builds a new unit X � using the
targets given in Figure �� Similarly if Z is ever �wrongly off� it builds a unit
Y � Apart from the di
erent targets these units are trained and then frozen
just as Z was�

Step �� The outputs of X and Y are connected as inputs to Z� The weight from
X is large and negative whilst that from Y is large and positive� The size
of the weight from X �Y � needs to exceed the sum of Z�s positive �negative�
input weights� which could be done explicitly or by Perceptron Learning�

New units are only generated if the parent makes errors� and the number of er�
rors decreases at every branching� It follows that eventually none of the terminal
daughters makes any mistakes� so neither do their parents� and neither do their par�
ents and so on� Therefore every unit in the whole tree produces its target output�
including Z� the output unit� Hence the classi�cation is learned�

� Simulations

In all the simulations shown here the �starred� entries in Figure � were not included
in a daughter�s training set�� To decrease training times� a fast and well behaved
version of perceptron learning �Frean� in preparation	 was used to train the weights�
in preference to the Pocket Algorithm� While this method is not guaranteed to �nd
the optimal weights� in practice it produces substantially fewer errors in a given
time than the Pocket Algorithm� The weight changes given by the usual Perceptron
Learning Rule �equation �	 were simply multiplied by

T

T�
exp

�
�j��j

T

�

�If the whole training set is used in every case� the number of units produced is relatively
una�ected for the problems investigated here� but the training time �a combination of the time
per epoch and number of epochs required to generate a comparable network� is approximately
doubled for the problems discussed�

�

Y

Z

X

Off (even)On (odd)

Figure �� Solution for ��bit Parity� The output unit Z on its own can clearly make
a minimum of two mistakes� when the plane de�ned by its weights cuts the cube as
shown� X corrects the wrongly on pattern by responding to it alone� and similarly
Y corrects the wrongly off pattern�

This factor decreases with j�j� which measures how �serious� the error is� The ra�
tionale behind this approach is that an error where j�j is large is di�cult to correct
without causing other errors and should therefore be weighted as less signi�cant
than those where j�j is small� The �temperature� T controls how strongly this
weighting is biased to small j�j� T was reduced linearly from T� to zero over the
entire training period� At high T the Perceptron Rule is recovered� but as T de�
creases the weights are �frozen�� Unless otherwise stated� T� was set to �� and ����
passes were made through the training set�

Parity

In this problem the output should be on if the number of active inputs is odd� and
off if it is even� Parity is often cited as a di�cult problem for neural networks to
learn� being a predicate of order N �Minsky and Papert ����	
 that is� at least one
hidden unit must sample all of the N inputs� It is also of interest because there
is a known solution consisting of a single layer of N hidden units projecting to an
output unit� It is easy to see how the Upstart Algorithm tackles parity �see �gure
�	� Essentially the same structure as that shown for N�� would arise for any N�
although for large problems the optimal weights become much harder to �nd� I
have tried parity for up to N���� and in all cases N units are constructed� including
the output unit� In all cases except N���� ���� passes were su�cient to generate
the minimal tree� For ���bit parity� the �gure was �������

�

Random mappings

In this problem the binary classi�cation is de�ned by assigning each of the �N pat�
terns its target � or � with �� probability� Again this is a di�cult problem� due
to the absence of correlations and structure in the input for the network to exploit�
The networks obtained for N up to �� are summarised in Figure �� with comparisons
to the Tiling Algorithm�

Generalisation

Neural networks are often ascribed the property of generalisation� the ability to
perform well on all patterns taken from a given distribution after having seen only
a subset of them� Several workers �Denker et al� ���!� Mezard and Nadal ����	
have looked at generalisation using the ���or�more clumps� predicate� The problem
is this� given an input pattern� respond on if the number of clumps is � or greater
and off otherwise� where a �clump� is a group of adjacent� ��s bounded on either
side by ��s� As with parity� there is a solution consisting of a single hidden layer
of N units which would solve the problem exactly� Following Mezard and Nadal�
the patterns were generated by a Monte Carlo method �Binder ��!�	 such that the
mean number of clumps is ���� I used N��� inputs� with a training set of up to
��� patterns� The set used to test the resulting net�s ability to generalise was a
further ��� patterns� The results� with comparisons to the Tiling Algorithm� are
summarised in Figure ��

� Discussion

The architecture generated by this procedure is unconventional in that it has a
hierarchical tree structure� However in the case where we choose not to eliminate
any training patterns there is an equivalent structure with the same units arranged
as a single hidden layer� Consider two daughters �say X�Y	 and their parent �Z	�
With primes denoting �corrected� values� the corrected value o�

Z is always equal to
oZ � o�

X � o�

Y � This formulation is possible because the combinations which would
disobey this never occur� For example Y would never be correctly on if Z was on�
Since this is true of every unit in the tree� the �nal output is simply a sum of the
�raw� responses� For example�

output � o�

Z � oA � oB � oC � � � � � oX � oY � oZ

Imagine the tree units disconnected from one another and placed in a single layer�
A new output unit connected to this �hidden� layer can easily calculate the ap�
propriate sum by� for example� having weights of �� from each unit which adds to
the sum and �� from each unit that subtracts� with a bias of zero� In e
ect we
can convert a binary tree into a single hidden layer architecture which implements
the same mapping� at the expense of adding one unit and being unable to exploit
pattern elimination� The algorithm for constructing a single hidden layer architec�
ture is� construct units as before� omitting Step � �where they are connected into a
feed�forward tree	� Then connect all the units so constructed to a new output unit�
The weights can be learned by Perceptron Learning� or can be inferred from the
tree structure� there is a sign reversal for every �X� daughter�

The Upstart method can be extended in a number of ways�

�Circular boundary conditions are used� input � is 	adjacent
 to input N

!

Number of training patterns

7500 250 500 1000

Upstart

Tiling

N
um

be
r

of
 u

ni
ts

 g
en

er
at

ed

250

200

150

100

50

0

Figure �� Number of units built vs the number of patterns ��N 	 for the random
mapping problem� The slope of the Upstart line is approximately ���� Each point
is an average of �� runs� each on a di
erent training set�

�

Upstart

Tiling

N
um

be
r

of
 u

ni
ts

 b
ui

lt
%

 te
st

 s
et

 c
or

re
ct

Number of training patterns

20

60

0

40

80

6005004003002001000

50

70

60

80

90

100

Figure �� Performance of the method on the ���or�more clumps� problem� The
lower graph shows the generalisation as the size of the training set is increased�
Plotted above this and with the same abscissa is the size of the corresponding
network� T� � ���� �� runs per point� each on a di
erent set� Where not shown�
error bars are smaller than the points�

�

First� we are not restricted to binary branching trees� Having trained a daughter
unit and connected it to the output� a new daughter can now be trained using
targets derived from the partially corrected output� instead of the daughter� and so
on until no more mistakes are made� This would build a single hidden layer� Hybrid
methods� building trees of variable breadth� will also work�

Second� these algorithms can be extended to problems involving multiple output
units� A good method should build considerably fewer units than would be obtained
by treating each output separately �especially if the output targets are correlated	

in other words� maximum mutual use should be made of hidden units� Consider
the following algorithm� where steps � and � are repeated until every output unit
makes no mistakes �

Start� There are no hidden units and no connections� so the output units are always
off�

Step �� Choose an output unit �say� the one which makes the most errors	� Build
the appropriate hidden unit to correct some of the mistakes being made by
this output unit� as described above� Connect this new unit to all the output
units�

Step �� Train the weights from each unit in this enlarged hidden layer to each of
the output units� Re�evaluate the numbers of errors made by each output
unit�

Hence a single hidden layer is constructed�

In conclusion� the design of general purpose supervised learning algorithms for neu�
ral networks involves two important considerations� the network should succeed
in correctly classifying the patterns it is trained upon� and non�trivial solutions
should involve as few computational elements as possible� avoiding redundant com�
putation� The Upstart Algorithm can build a network to implement correctly any
Boolean mapping� Because each �daughter� cell makes as few errors as possible� it
corrects as many �parent� errors as possible� which results in small networks� These
networks are smaller than those produced by the Tiling Algorithm� In general the
minimum number of units required for any given problem cannot be calculated�
However� for a few special cases such as parity and the clumps problem it is known
that N or fewer units are needed� and the Upstart Algorithm achieves this� In the
potentially worst case where the targets are randomly assigned� m patterns can be
correctly classi�ed by approximatelym�� units� The basic idea can be implemented
in di
erent architectures and is extendable to the case of multiple outputs�

� Acknowledgments

I am grateful to David Willshaw who helped greatly with the manuscript� and also
David Wallace for useful comments� I particularly thank Peter Dayan for suggesting
that the tree could be �squashed� into a single hidden layer� as well as for helpful
discussions�

��

� References

Binder�K� ��!�� Monte Carlo Methods in Statistical Physics� Topics in Current
Physics� � �Berlin�Springer�

Denker�J�� Schwartz�D�� Wittner�B�� Solla�S�� Howard�R�� Jackel�L� and Hop�eld�J�
���!� Large Automatic Learning� Rule Extraction and Generalization� Com�
plex Systems I��!!����

Frean�M�R� A �Thermal� Perceptron for E�cient Linear Discrimination� In prepa�
ration�

Gallant�S�I� ����a� Three Constructive Algorithms for Network Learning� Proc�
	th Annual Conf� of Cognitive Science Soc�

Gallant�S�I� ����b� Optimal Linear Discriminants� IEEE Proc� 	th Conf� on
Pattern Recognition� Paris�

Mezard�M� and J�Nadal� ����� Learning in Feedforward Layered Networks � the
Tiling Algorithm� J�Physics A� ���������������

Minsky�M� and S�Papert� ����� Perceptrons� MIT Press�

Nadal�J� ����� Study of a Growth Algorithm for Neural Networks International
J� of Neural Systems����������

Rosenblatt�F� ����� Principles of Neurodynamics� Spartan Books� New York�

Rumelhart�D�E�� Hinton�G�E�� and Williams�R�J� ����� Learning Internal Repre�
sentations by error propagation� In Rumelhart�D�E�� McClelland�J�L�� and the
PDP Research Group� editors� Parallel Distributed Processing� Explorations
in the Microstructure of Cognition� Volume I Foundations� MIT Press�

��

