The Upstart Algorithm :
a method for constructing and training feed-forward
neural networks

Marcus Frean

Department of Physics and Centre for Cognitive Science
Edinburgh University, The Kings Buildings
Mayfield Road, Edinburgh, Scotland
email : marcus@cns.ed.ac.uk

Neural Computation 2, 198-209 (1990)

Abstract

A general method for building and training multi-layer perceptrons com-
posed of linear threshold units is proposed. A simple recursive rule is used to
build the net’s structure by adding units as they are needed, while a modified
Perceptron algorithm is used to learn the connection strengths. Convergence
to zero errors is guaranteed for any Boolean classification on patterns of bi-
nary variables. Simulations suggest that this method is efficient in terms of
the numbers of units constructed, and the networks it builds can generalise
over patterns not in the training set.

1 Introduction

The Perceptron Learning Algorithm (Rosenblatt 1962) offers a powerful but re-
stricted method for learning binary classifications. All classifications that can in
theory be learned by the Perceptron architecture will be learned; however, the
number of classifications it can learn is only a tiny subset (linearly separable pat-
terns) of those that are possible (Minsky and Papert 1969). To perform any arbi-
trary classification successfully, “hidden” units and/or feedback between units are
required. The problem is to train such networks, and recently quite powerful meth-
ods have become available, most notably “back propagation” in its various forms
(eg, Rumelhart, Hinton and Williams 1986). However, because many of these meth-
ods are based on hill-climbing which has the perennial problem of becoming stuck in
local optima, they cannot guarantee that the classification will be learned. Another
problem is that a priori no realistic estimate can be made of the number of hidden
units that are required. Recently, methods such as the Tiling Algorithm (Mezard
and Nadal 1989) and others (Gallant 1986a, Nadal 1989) have been proposed which
get around both these problems. In these, the hidden units are constructed in layers
one by one as they are needed. By showing that at least one unit in each layer makes
fewer errors than a corresponding unit in the previous layer, eventual convergence
to zero errors is guaranteed.

The method described here also constructs units as it goes, but in a simple and quite
different way. Instead of building layers from the input outwards until convergence,
new units are interpolated between the input layer and the output. The role of
these units is to correct mistakes made by the output unit.

2 Basics

Suppose we are given a binary classification to be learned. Each input pattern of
N binary values has an associated target output which the network must learn to
produce. The units are all linear threshold units connected by variable weights to
the inputs, with output o given by

_{ 1 if¢>0

1 0 otherwise
N
where ¢ :ZWifi
1=0

The W'’s are the weights, and &; is the value of the ith input in the given pattern.
The necessary threshold or “bias” is included by having an extra input which is set
to 1 for all the input patterns. On presentation of pattern u, Perceptron Learning
(Rosenblatt 1962) alters the weights if the target t* differs from the output:

AW} = (tH — o)l (1)

Using this method any linearly separable class will be learned, but when the patterns
are not linearly separable the values of the weights never stabilise. However, a simple
extension called the Pocket Algorithm (Gallant 1986b) suffices to make the system
well behaved. This consists of running a Perceptron exactly as above with a random
presentation of patterns, but also keeping a copy of the set of weights which has
lasted longest without being changed. This set of weights will give the minimum
possible number of errors with a probability approaching unity as the training time
increases. That is, if a solution giving say p or fewer errors exists then the pocket
algorithm can be used to find it (although unfortunately there is no bound known
for the training time actually required). I make use of this algorithm to demonstrate
convergence to zero errors.

3 Rationale

The basic idea is that a unit builds other units to correct its mistakes. Any unit
(say Z) can make two kinds of mistake:

“wrongly ON 7 (of, =1, but t, = 0)
“wrongly OFF” (of, =0, but t, = 1)

Consider patterns for which Z is wrongly ON: Z could be corrected by a large
negative weight from a new unit (say X) which is active only for those patterns.
Likewise when Z is wrongly OFF it could be corrected by a large positive weight

from another unit (say Y') which is active at the right time. Hence X and Y (also
connected to the input layer by variable weights) can be trained with targets which
depend on Z’s response. These new units might be called “daughters” since they
are generated! by the established “parent” unit, Z.

Consider, for example, the targets we should assign to X, the unit whose role is
to inhibit Z. We would like X to be active if Z was wrongly ON, and silent if Z
was correctly ON. Similarly X should be silent if Z was wrongly OFF (to avoid
further inhibition of Z). Finally, X could be silent if Z was correctly OFF, although
if X is active in this case, the effect is merely to reinforce Z’s response when it was
already correct. This doesn’t itself cause an error, so in practice we can eliminate
these patterns from X'’s training set. This elimination makes the problem easier and
faster to solve, but is not essential for the error-correcting property described below.
Targets for Y are similarly derived. These target assignments are summarised in
Figure 1.

An important point is that the “raw” output of unit Z is used to set the daughter’s
targets, rather than the value of Z after the daughters have exerted any effect, since
this would introduce feedback.

Two useful results follow immediately from this training method, because it essen-
tially gives daughters (X or V') an easier problem to solve than their parent (Z).
Firstly, daughters can always make fewer errors than their parent, and secondly,
connecting daughter to parent with the appropriate weight will always reduce the
errors made by the parent.

Proof : Z’s errors are
e(Z) = e(Z)on + e(Z)orr

where e(Z)on is the number of patterns for which Z is wrongly ON.

If X responded OFF to every pattern, it would make as many errors as there were
patterns of target tx = 1. However, X can always do better than this. In particular,
it can always be ON for at least one input pattern whose target is 1 and OFF for all
other patterns. For example if the input weights are

W, =2¢ -1
with a bias weight Wy =—)_&k(2¢k —1)
J
only the /,Lth pattern turns the unit ON. Given that the Pocket Algorithm can find

the optimal weights visited by a perceptron with any given probability, at worst X
could find the above weights. Therefore

e(X) < e(Z)on < e(2) (2)

A similar argument applies to Y. It also follows that Z’s errors are reduced by X,

since]
e(Z with X) =e(X)on + e(X)orr + e(Z)orF

:e(X) + 6(Z)0FF (3)

<e(Z)

INote however that the activity proceeds from daughter to parent.

Therecursive element of the Upstart algorithm.

Input

Z'starget Z'starget
1 0 1

Z'soutput
Z’ s output

Figure 1: Correcting a parent unit: the left hand table gives the targets, tx, for the
daughter unit X for each combination of (0z,tz). For example, the lower left-hand
entry assigns tx to be 1 when oz = 1 and tz = 0 : the ‘wrongly ON’ case. Similarly
the right hand table gives the values of ¢ty for the daughter unit Y. The dotted line
represents the flow of this target information. The “starred” entries correspond to
cases where the pattern could be eliminated from the daughter’s training set.

and similarly for Y on its own. When the joint action of X and Y is considered,
the same result holds, i.e. e(Z with X,)Y) < e(Z) —1. In the next section an
algorithm which uses the first of these results is described. Other possibilities are
discussed in section 6.

4 The Upstart Algorithm

Assume we already have a unit Z which sees input patterns & : ¢ = 1,.., N and
has associated targets t%;. The weights from the input layer to Z are trained to
minimise the discrepancies between Z’s output and target and once trained, these
weights remain frozen. This “first” unit is actually the eventual output unit, and
its targets are the classification to be learned. The following two steps are then ap-
plied recursively, generating a binary branching tree of units. Thus daughter units
behave just as Z did, constructing daughter units themselves if they are required.

Step 1. If Z makes any “wrongly ON” mistakes, it builds a new unit X, using the
targets given in Figure 1. Similarly if Z is ever “wrongly OFF” it builds a unit
Y. Apart from the different targets these units are trained and then frozen
just as Z was.

Step 2. The outputs of X and Y are connected as inputs to Z. The weight from
X is large and negative whilst that from Y is large and positive. The size
of the weight from X [Y] needs to exceed the sum of Z’s positive [negative]
input weights, which could be done explicitly or by Perceptron Learning.

New units are only generated if the parent makes errors, and the number of er-
rors decreases at every branching. It follows that eventually none of the terminal
daughters makes any mistakes, so neither do their parents, and neither do their par-
ents and so on. Therefore every unit in the whole tree produces its target output,
including Z, the output unit. Hence the classification is learned.

5 Simulations

In all the simulations shown here the “starred” entries in Figure 1 were not included
in a daughter’s training set.? To decrease training times, a fast and well behaved
version of perceptron learning (Frean, in preparation) was used to train the weights,
in preference to the Pocket Algorithm. While this method is not guaranteed to find
the optimal weights, in practice it produces substantially fewer errors in a given
time than the Pocket Algorithm. The weight changes given by the usual Perceptron
Learning Rule (equation 1) were simply multiplied by

T oo (21
To T
21f the whole training set is used in every case, the number of units produced is relatively
unaffected for the problems investigated here, but the training time (a combination of the time

per epoch and number of epochs required to generate a comparable network) is approximately
doubled for the problems discussed.

@ on (odd) () Off (even)

Figure 2: Solution for 3-bit Parity. The output unit Z on its own can clearly make
a minimum of two mistakes, when the plane defined by its weights cuts the cube as
shown. X corrects the wrongly ON pattern by responding to it alone, and similarly
Y corrects the wrongly OFF pattern.

This factor decreases with |¢|, which measures how “serious” the error is. The ra-
tionale behind this approach is that an error where |@| is large is difficult to correct
without causing other errors and should therefore be weighted as less significant
than those where |@| is small. The “temperature” T' controls how strongly this
weighting is biased to small |¢|. T was reduced linearly from Ty to zero over the
entire training period. At high 7" the Perceptron Rule is recovered, but as T' de-
creases the weights are “frozen”. Unless otherwise stated, Ty was set to 1, and 1000
passes were made through the training set.

Parity

In this problem the output should be ON if the number of active inputs is odd, and
OFF if it is even. Parity is often cited as a difficult problem for neural networks to
learn, being a predicate of order N (Minsky and Papert 1969); that is, at least one
hidden unit must sample all of the N inputs. It is also of interest because there
is a known solution consisting of a single layer of N hidden units projecting to an
output unit. It is easy to see how the Upstart Algorithm tackles parity (see figure
2). Essentially the same structure as that shown for N=3 would arise for any N,
although for large problems the optimal weights become much harder to find. I
have tried parity for up to N=10, and in all cases N units are constructed, including
the output unit. In all cases except N=10, 1000 passes were sufficient to generate
the minimal tree. For 10-bit parity, the figure was 10,000.

Random mappings

In this problem the binary classification is defined by assigning each of the 2V pat-
terns its target 0 or 1 with 50% probability. Again this is a difficult problem, due
to the absence of correlations and structure in the input for the network to exploit.
The networks obtained for N up to 10 are summarised in Figure 3, with comparisons
to the Tiling Algorithm.

Generalisation

Neural networks are often ascribed the property of generalisation: the ability to
perform well on all patterns taken from a given distribution after having seen only
a subset of them. Several workers (Denker et al. 1987, Mezard and Nadal 1989)
have looked at generalisation using the “2-or-more clumps” predicate. The problem
is this: given an input pattern, respond ON if the number of clumps is 2 or greater
and OFF otherwise, where a “clump” is a group of adjacent® 1’s bounded on either
side by 0’s. As with parity, there is a solution consisting of a single hidden layer
of N units which would solve the problem exactly. Following Mezard and Nadal,
the patterns were generated by a Monte Carlo method (Binder 1979) such that the
mean number of clumps is 1.5. I used N=25 inputs, with a training set of up to
600 patterns. The set used to test the resulting net’s ability to generalise was a
further 600 patterns. The results, with comparisons to the Tiling Algorithm, are
summarised in Figure 4.

6 Discussion

The architecture generated by this procedure is unconventional in that it has a
hierarchical tree structure. However in the case where we choose not to eliminate
any training patterns there is an equivalent structure with the same units arranged
as a single hidden layer. Consider two daughters (say X,Y) and their parent (Z).
With primes denoting “corrected” values, the corrected value o', is always equal to
oz — o'y + 0%,. This formulation is possible because the combinations which would
disobey this never occur. For example Y would never be correctly ON if Z was ON.
Since this is true of every unit in the tree, the final output is simply a sum of the
“raw” responses. For example:

output = o, = o4 —o0op+oc+---—ox +oy +oz

Imagine the tree units disconnected from one another and placed in a single layer.
A new output unit connected to this “hidden” layer can easily calculate the ap-
propriate sum by, for example, having weights of +1 from each unit which adds to
the sum and —1 from each unit that subtracts, with a bias of zero. In effect we
can convert a binary tree into a single hidden layer architecture which implements
the same mapping, at the expense of adding one unit and being unable to exploit
pattern elimination. The algorithm for constructing a single hidden layer architec-
ture is: construct units as before, omitting Step 2 (where they are connected into a
feed-forward tree). Then connect all the units so constructed to a new output unit.
The weights can be learned by Perceptron Learning, or can be inferred from the
tree structure: there is a sign reversal for every “X” daughter.

The Upstart method can be extended in a number of ways.

3Circular boundary conditions are used: input 1 is “adjacent” to input N

250 ® Tiling

O Upstart

200 r

150

100

Number of units generated

s | 4
s | el
.
0 ﬁ' 1 1 1 1
0 250 500 750 1000

Number of training patterns

Figure 3: Number of units built vs the number of patterns (2%V) for the random
mapping problem. The slope of the Upstart line is approximately 1/9. Each point
is an average of 25 runs, each on a different training set.

80 1 ® Tiling

O Upstart

60 [

20 | +

Number of units built

100 -

PO

80 |

70 1

% test set correct

60

————
e

50 1 1 1 1 1 1
0 100 200 300 400 500 600
Number of training patterns

Figure 4: Performance of the method on the “2-or-more clumps” problem. The
lower graph shows the % generalisation as the size of the training set is increased.
Plotted above this and with the same abscissa is the size of the corresponding
network. Ty = 4.0. 25 runs per point, each on a different set. Where not shown,
error bars are smaller than the points.

First, we are not restricted to binary branching trees. Having trained a daughter
unit and connected it to the output, a new daughter can now be trained using
targets derived from the partially corrected output, instead of the daughter, and so
on until no more mistakes are made. This would build a single hidden layer. Hybrid
methods, building trees of variable breadth, will also work.

Second, these algorithms can be extended to problems involving multiple output
units. A good method should build considerably fewer units than would be obtained
by treating each output separately (especially if the output targets are correlated);
in other words, maximum mutual use should be made of hidden units. Consider
the following algorithm, where steps 1 and 2 are repeated until every output unit
makes no mistakes :

Start. There are no hidden units and no connections, so the output units are always
OFF.

Step 1. Choose an output unit (say, the one which makes the most errors). Build
the appropriate hidden unit to correct some of the mistakes being made by
this output unit, as described above. Connect this new unit to all the output
units.

Step 2. Train the weights from each unit in this enlarged hidden layer to each of
the output units. Re-evaluate the numbers of errors made by each output
unit.

Hence a single hidden layer is constructed.

In conclusion, the design of general purpose supervised learning algorithms for neu-
ral networks involves two important considerations: the network should succeed
in correctly classifying the patterns it is trained upon, and non-trivial solutions
should involve as few computational elements as possible, avoiding redundant com-
putation. The Upstart Algorithm can build a network to implement correctly any
Boolean mapping. Because each “daughter” cell makes as few errors as possible, it
corrects as many “parent” errors as possible, which results in small networks. These
networks are smaller than those produced by the Tiling Algorithm. In general the
minimum number of units required for any given problem cannot be calculated.
However, for a few special cases such as parity and the clumps problem it is known
that N or fewer units are needed, and the Upstart Algorithm achieves this. In the
potentially worst case where the targets are randomly assigned, m patterns can be
correctly classified by approximately m /9 units. The basic idea can be implemented
in different architectures and is extendable to the case of multiple outputs.

7 Acknowledgments

I am grateful to David Willshaw who helped greatly with the manuscript, and also
David Wallace for useful comments. I particularly thank Peter Dayan for suggesting
that the tree could be “squashed” into a single hidden layer, as well as for helpful
discussions.

10

8 References

Binder,K. 1979. Monte Carlo Methods in Statistical Physics. Topics in Current
Physics, T (Berlin:Springer)

Denker,J., Schwartz,D., Wittner,B., Solla,S., Howard,R.., Jackel,L.. and Hopfield,J.
1987. Large Automatic Learning, Rule Extraction and Generalization, Com-
plex Systems 1:877-922

Frean,M.R. A “Thermal” Perceptron for Efficient Linear Discrimination. In prepa-
ration.

Gallant,S.I. 1986a. Three Constructive Algorithms for Network Learning. Proc.
8th Annual Conf. of Cognitive Science Soc.

Gallant,S.I. 1986b. Optimal Linear Discriminants, IEEE Proc. 8th Conf. on
Pattern Recognition, Paris.

Mezard,M. and J.Nadal. 1989. Learning in Feedforward Layered Networks : the
Tiling Algorithm, J.Physics A, 22,12:2191-2203

Minsky,M. and S.Papert. 1969. Perceptrons, MIT Press.

Nadal,J. 1989. Study of a Growth Algorithm for Neural Networks International
J. of Neural Systems,1,1:55-59

Rosenblatt,F. 1962. Principles of Neurodynamics, Spartan Books, New York.

Rumelhart,D.E., Hinton,G.E., and Williams,R.J. 1986. Learning Internal Repre-
sentations by error propagation. In Rumelhart,D.E., McClelland,J.L., and the
PDP Research Group, editors, Parallel Distributed Processing: FExplorations
in the Microstructure of Cognition. Volume I Foundations, MIT Press.

11

